13 research outputs found

    Preference-aware task assignment in on-demand taxi dispatching: An online stable matching approach

    Get PDF
    A central issue in on-demand taxi dispatching platforms is task assignment, which designs matching policies among dynamically arrived drivers (workers) and passengers (tasks). Previous matching policies maximize the profit of the platform without considering the preferences of workers and tasks (e.g., workers may prefer high-rewarding tasks while tasks may prefer nearby workers). Such ignorance of preferences impairs user experience and will decrease the profit of the platform in the long run. To address this problem, we propose preference-aware task assignment using online stable matching. Specifically, we define a new model, Online Stable Matching under Known Identical Independent Distributions (OSM-KIID). It not only maximizes the expected total profits (OBJ-1), but also tries to satisfy the preferences among workers and tasks by minimizing the expected total number of blocking pairs (OBJ-2). The model also features a practical arrival assumption validated on real-world dataset. Furthermore, we present a linear program based online algorithm LP-ALG, which achieves an online ratio of at least 1−1/e on OBJ-1 and has at most 0.6·|E| blocking pairs expectedly, where |E| is the total number of edges in the compatible graph. We also show that a natural Greedy can have an arbitrarily bad performance on OBJ-1 while maintaining around 0.5·|E| blocking pairs. Evaluations on both synthetic and real datasets confirm our theoretical analysis and demonstrate that LP-ALG strictly dominates all the baselines on both objectives when tasks notably outnumber workers

    Genome-wide identification and expression analysis of the KCS gene family in soybean (Glycine max) reveal their potential roles in response to abiotic stress

    Get PDF
    Very long chain fatty acids (VLCFAs) are fatty acids with chain lengths of 20 or more carbon atoms, which are the building blocks of various lipids that regulate developmental processes and plant stress responses. 3-ketoacyl-CoA synthase encoded by the KCS gene is the key rate-limiting enzyme in VLCFA biosynthesis, but the KCS gene family in soybean (Glycine max) has not been adequately studied thus far. In this study, 31 KCS genes (namely GmKCS1 - GmKCS31) were identified in the soybean genome, which are unevenly distributed on 14 chromosomes. These GmKCS genes could be phylogenetically classified into seven groups. A total of 27 paralogous GmKCS gene pairs were identified with their Ka/Ks ratios indicating that they had undergone purifying selection during soybean genome expansion. Cis-acting element analysis revealed that GmKCS promoters contained multiple hormone- and stress-responsive elements, indicating that GmKCS gene expression levels may be regulated by various developmental and environmental stimuli. Expression profiles derived from RNA-seq data and qRT-PCR experiments indicated that GmKCS genes were diversely expressed in different organs/tissues, and many GmKCS genes were found to be differentially expressed in the leaves under cold, heat, salt, and drought stresses, suggesting their critical role in soybean resistance to abiotic stress. These results provide fundamental information about the soybean KCS genes and will aid in their further functional elucidation and exploitation

    Federated topic discovery: A semantic consistent approach

    No full text

    A Unified Approach to Online Matching with Conflict-Aware Constraints

    No full text
    Online bipartite matching and allocation models are widely used to analyze and design markets such as Internet advertising, online labor, and crowdsourcing. Traditionally, vertices on one side of the market are fixed and known a priori, while vertices on the other side arrive online and are matched by a central agent to the offline side. The issue of possible conflicts among offline agents emerges in various real scenarios when we need to match each online agent with a set of offline agents.For example, in event-based social networks (e.g., Meetup), offline events conflict for some users since they will be unable to attend mutually-distant events at proximate times; in advertising markets, two competing firms may prefer not to be shown to one user simultaneously; and in online recommendation systems (e.g., Amazon Books), books of the same type “conflict” with each other in some sense due to the diversity requirement for each online buyer.The conflict nature inherent among certain offline agents raises significant challenges in both modeling and online algorithm design. In this paper, we propose a unifying model, generalizing the conflict models proposed in (She et al., TKDE 2016) and (Chen et al., TKDE 16). Our model can capture not only a broad class of conflict constraints on the offline side (which is even allowed to be sensitive to each online agent), but also allows a general arrival pattern for the online side (which is allowed to change over the online phase). We propose an efficient linear programming (LP) based online algorithm and prove theoretically that it has nearly-optimal online performance. Additionally, we propose two LP-based heuristics and test them against two natural baselines on both real and synthetic datasets. Our LP-based heuristics experimentally dominate the baseline algorithms, aligning with our theoretical predictions and supporting our unified approach

    Hu-Fu: Efficient and secure spatial queries over data federation

    No full text
    Data isolation has become an obstacle to scale up query processing over big data, since sharing raw data among data owners is often prohibitive due to security concerns. A promising solution is to perform secure queries over a federation of multiple data owners leveraging secure multi-party computation (SMC) techniques, as evidenced by recent federation work over relational data. However, existing solutions are highly inefficient on spatial queries due to excessive secure distance operations for query processing and their usage of general-purpose SMC libraries for secure operation implementation. In this paper, we propose Hu-Fu, the first system for efficient and secure spatial query processing on a data federation. The idea is to decompose the secure processing of a spatial query into as many plaintext operations and as few secure operations as possible, where fewer secure operators are involved and all secure operators are implemented dedicatedly. As a working system, Hu-Fu supports not only query input in native SQL, but also heterogeneous spatial databases (e.g., PostGIS, Simba, GeoMesa, and SpatialHadoop) at the backend. Extensive experiments show that Hu-Fu usually outperforms the state-of-the-arts in running time and communication cost while guaranteeing security

    Hu-Fu: A Data Federation System for Secure Spatial Queries

    No full text
    The increasing concerns on data security limit the sharing of data distributedly stored at multiple data owners and impede the scale of spatial queries over big urban data. In response, data federation systems have emerged to perform secure queries across multiple data owners leveraging secure multi-party computation. However, existing systems are designed for relational data. They are highly inefficient on spatial queries and limited in usability. In this demonstration, we introduce Hu-Fu, the first data federation system for secure spatial queries with high efficiency and usability. Hu-Fu is designed from the perspectives of the query user and the data owner for high usability and decomposes a spatial query into as many plaintext operators and as few secure operators as possible for high efficiency. We demonstrate the deployment and usage of Hu-Fu via cross-company taxi-calling, a popular smart city application
    corecore